Varroosis control with 60% formic acid after honey harvest Comparing the long-term impact of three popular treatment methods

FICICIYAN, ANOUSH*; HAMM, ANDREÉ Rheinische Friedrich-Wilhelms-Universität Bonn

Introduction

Since 2013 only formic acid of 60% concentration is approved. Against this background this experiment examines if **application method** and **micro-climate factors (temperature, sunlight, wind)** play a **key role** controlling varroosis. As a consequence we hypothesize that certain combinations of these factors promote the survival of honeybee colonies

Methodology

August 2015:

- Arrangement of 30 bee colonies in three groups (shady, corner, sunny) (fig.1)
- Estimations of the populations
- Estimation of mite-infestation

Fig. 1: arrangement of colony-groups around a field barn

- Varroa-treatment using 60% formic acid in:
- 10x Mite-away-Quick-Strips (MAQS),
- 10x Liebig-Dispenser (LD-60%),
- 10 x Nassenheider professional (Nassprof)

October 2015 and March 2016:

Post-treatment estimations of the populations

Results

- → High treatment-success when using Nassenheider professional (fig.2)
- →No significant relation between the treatmentmethod and the absolute bee numbers (fig.3)
- → Differences in colony-development depending on arrangement reveals clusters of shady and sunny micro-climate (not significant) (fig.4)

Fig.2: Treatment success on mite-reduction

Fig.3: Development of the averaged absolute bee-numbers of the three treatment groups

Fig.4: Development of the averaged absolute bee-numbers of the micro-climate groups (for number of replicates per group see fig.1)

Conclusion

Further investigations needed to control the micro-climate impact for a success of hibernation

